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Abstract A unitary transformation allows to separate
(block-diagonalize) the Dirac Hamiltonian into two parts:
one part solely describes electrons, while the other gives rise
to negative-energy states, which are the so-called positronic
states. The block-diagonal form of the Hamiltonian no longer
accounts for the coupling of both kinds of states. The positive-
energy (‘electrons-only’) part can serve as a ‘fully’relativistic
electrons-only theory, which can be understood as a rigorous
basis for chemistry. Recent developments of the Douglas–
Kroll–Hess (DKH) method allowed to derive a sequence of
expressions, which approximate this electrons-only Hamil-
tonian up to arbitrary-order. While all previous work focused
on the numerical stability and accuracy of these arbitrary-
order DKH Hamiltonians, conceptual issues and paradoxa
of the method were mostly left aside. In this work, the con-
ceptual side of DKH theory is revisited in order to identify
essential aspects of the theory to be distinguished from purely
computational consideration.

1 Introduction

This year, we celebrate the centenary of Einstein’s theory of
special relativity. The most important consequence of this
theory is that any mathematical description of physical phe-
nomena has to obey the principles of special relativity [1]:
apart from the constant speed of light in any inertial frame of
reference, the fundamental equations have to take the same
form in any inertial frame of reference; in other words, they
must be covariant under Lorentz transformations.

However, some nonrelativistic approaches to physical
problems may be little affected by the so-called relativistic
effects, i.e., their numerical results may not deviate signifi-
cantly from a correct relativistic description. This, for in-
stance, is the case with Newtonian mechanics, when applied
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to the motion of objects in daily life. Nevertheless, many
physical situations exist where deviations of a nonrelativistic
description from numerical results of a relativistic formula-
tion or from experiment cannot be neglected. In such cases,
it is desirable to capture the numerical relativistic effect with
a ‘quasi-relativistic’ theory, which is as consistent as pos-
sible with fundamental physical principles. It was realized
about 30 years ago that such a situation arises in the chemis-
try of heavy elements (see [2–6]). For the calculation of the
numerical relativistic effect in molecular systems, relativis-
tic quantum chemistry [7–10] has been developed since then.
Thus, 100 years after Einstein’s annus mirabilis, relativistic
quantum chemistry has matured to a well-developed theory
whose principles shall be revisited in this work.

A fundamental theory for chemistry should be a relativis-
tically correct quantum mechanical all-electron theory, which
also enables us to do actual calculations. A truly relativistic
theory for the many-electron systems in external fields, such
as atoms and molecules, which fulfills these requirements has
never been devised and it may be questioned whether it will
be derived. Of course, physicists would object to this saying
that quantum electrodynamics [11–13] represents such a the-
ory. One may reply in various ways to such an objection but
what is most important for chemistry is that actual calcula-
tions for arbitrary systems are unfeasible. Instead, a formu-
lation based on Dirac’s theory of a (single) electron [14–16]
turned out to be efficient and feasible at the same time. In
general, the deviation of results obtained in a first-quantized
Dirac-based all-electron framework from quantum electro-
dynamics, or more precisely, from calculations which model
certain quantum electrodynamical effects, turned out to be
negligibly small [17].

This formulation uses Dirac’s one-electron Hamiltonian,

hD = cα · p + (β − 1)c2 + Vnuc, (1)

where the Dirac matrices may be represented as usual, i.e.,
α is a 3-vector containing Pauli’s spin matrices on the off-
diagonal, β is a diagonal matrix with entries (1, 1,−1,−1),
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c is the speed of light, and Vnuc the external potential [see
Eq. 3 below; Hartree atomic units are used throughout]. It is
interesting to note that the explicit form of the matrices is not
important. They do have to fulfill certain relations in order
to make the basic equation of quantum mechanics, i.e., the
equation of motion hDψ = i∂ψ/∂t , Lorentz covariant [18].
These relations require α and β to be at least 4×4 matri-
ces. Thus, the corresponding wave function is a 4-vector, a
so-called 4-spinor. This 4-spinor ψ contains four functions
(components) to characterize the quantum mechanical state
of an electron. The lower two components ψS are usually
small compared to the upper two componentsψL for nuclear
charge numbers less than say Z = 100 (both ψS and ψL,
respectively, are two-component vectors: 2-spinors); for this
reason the former are called the small and the latter the large
components of the spinor. It is important to note that the off-
diagonal terms of the three 4×4 matrices in α couple the large
and small components, respectively.

The Dirac Hamiltonian is now applied as a substitute for
the Schrödinger one-electron operator in the electronic Ham-
iltonian for N electrons and M atomic nuclei in first-quan-
tized form,

Hel,D =
N∑

i=1

hD,i +
N∑

i<j

gij , (2)

with the electron-nucleus (inhD,i) and electron–electron inter-
action operators,

Vnuc,i =
M∑

J=1

−ZJ/|r i − RJ |, (3)

gij = 1/|r i − rj |, (4)
for the instantaneous point-charge Coulomb interactions of
nuclei and electrons (the nucleus–nucleus interaction is left
aside for brevity). One may introduce the so-called relativistic
correction terms for these instantaneous interactions (usually
the Breit operator is used as a correction for the electron–elec-
tron interaction), but this does not add any new insight into
the conceptual problems to be revisited here.

Before we proceed it appears to be appropriate to state
the obvious and to remove common misconceptions. The
four-component theoretical foundations indicated above are
formulated for a common absolute time valid for all parti-
cles in contrast with the principles of special relativity. In
addition, one applies the Born–Oppenheimer approximation
for the separation of nuclear and electronic degrees of free-
dom. Moreover, the formulation remains first-quantized even
if the language of second-quantization is applied to elegantly
rephrase the correlation problem for many-electron wave
functions. Needless to say that the four-component formu-
lation covers the whole periodic table of elements though
notable numerical effects are visible only for large nuclear
charge numbers (i.e., for heavy elements) or deep attractive
electron–nucleus potentials, respectively. A typical misper-
ception of this relativistic formulation of quantum chemistry
is that the small components of the spinor ψ describe a posi-
tron (or a positronic state), while the two upper large compo-
nents an electron: electrons as well as the so-called positronic

states are each described by sets of all four functions. This
is also reflected in the calculation of expectation values: the
kinetic energy of an electron and properties associated with
the application of an external magnetic field require large and
small component functions at the same time.

2 Four-component and two-component approaches

Quantum chemical methods based on the four-component
many-electron Hamiltonian (Eq. 2) have been successfully
devised by many groups (see e.g., Ref. [19] for a review
of methods, programs, and applications). Currently, the most
successful general purpose program package for highly
sophisticated four-component calculations is undoubtedly
Dirac [20]. Unfortunately, the four-component methods are
neither truly relativistically invariant — though often termed
‘fully’ relativistic — nor computationally competitive com-
pared to standard Schrödinger-based quantum chemical meth-
ods. However, the latter fact cannot be taken as an objection
against the four-component methods, it is merely a statement
to indicate that the study of molecules with, say, a hundred
atoms is hardly possible, at least for the moment. It should be
emphasized that the accuracy of results obtained with four-
component methods for atoms and molecules is very remark-
able (the reader is referred to the excellent and comprehensive
bibliography collected by Pyykkö [21–24] for examples). It
is the intention of this work to leave computational aspects
aside and to concentrate on conceptual issues. We should
thus elaborate on why the four-component methods are not
truly relativistic as already mentioned. The four-component
electronic Hamiltonian in Eq. 2 simply does not possess the
necessary invariance properties. All we can aim for with the
four-component methods is the approximation of the relativ-
istically correct numerical values of some physical quanti-
ties. But if we do accept that actual ‘fully’ relativistic, i.e.,
four-component calculations are based on equations which
do not fulfill the basic requirement of special relativity to
be covariant under Lorentz transformations, we may devise
other methods with merits not present in four-component the-
ory. Consequently, we require any other ‘fully’ relativistic
approach for the quantum mechanical description of atoms
and molecules to be as reliable as the four-component theory.
However, this other approach may improve on issues that can
be raised against the four-component methods for conceptual
reasons.

The major drawback of the four-component methods
emerges from a conceptual problem. This is the occurrence
of the positronic states, which are states at negative energies
separated by about −2c2 from the electronic bound states.
The connotation of ‘positronic’ suggests that there is a phys-
ical meaning inherent in these states. The opposite, however,
is the case: the first-quantized Dirac Hamiltonians in Eq. 2
restrict the quantum mechanical treatment to typical chemi-
cal systems in a certain energy range; particle creation pro-
cesses need not to be considered and the number of particles
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Fig. 1 Schematic representation of the Dirac Hamiltonian in a given basis with NL basis functions forψL and NS basis functions for the expansion
of ψS . Due to the so-called kinetic balance condition [33, 70, 71], a Gaussian-type basis set for the small component ψS is significantly larger,
which represents a computational bottleneck for four-component methods in self-consistent field calculations as well as integral transformations.
The scheme also demonstrates how the Dirac Hamiltonian may be decomposed into a sum of even, i.e., block-diagonal, and odd, i.e., off-diagonal
operators

does not change.1 Moreover, positrons would feature posi-
tive energies, but the positronic states have negative energies.
Last but not least, in actual calculations the negative-energy
states are usually represented by local Gaussian-type basis
functions, which do not adequately describe such continuum
states (remember that the external electron–nucleus potential
in the electronic Hamiltonian of Eq. 2 is only attractive for
electronic (bound) states because of the negative sign in Eq. 3
stemming from the negative charge of the electrons). Thus,
the positronic states possess no physical meaning and are
troublesome artifacts in four-component relativistic quantum
chemistry.

Now, we have introduced an accurate (four-component)
many-electron theory based on Dirac’s Hamiltonian plagued
with a conceptual inconsistency. It would be desirable to
replace the first-quantized four-component theory by an ap-
proach of the same accuracy, but without making any refer-
ence to negative-energy states. Two different kinds of such
‘reduction’approaches have been developed: elimination and
transformation techniques (see [25–27] for recent reviews).
Since the elimination schemes are not flawless as the oper-
ators turn out to be energy dependent (otherwise the lowest
order approximation is used), they appear to be less elegant
from a formal point of view than the transformation schemes
although they are numerically very efficient in practice (see
e.g., the popular ZORA method [28–30]).

The transformation techniques aim at a block-diagonal-
ization of the Dirac Hamiltonian (see also Fig. 1 for a graph-
ical representation),

hbd = UhDU
† =

(
h+ 0
0 h−

)
, (5)

in order to derive an upper block Hamiltonian h+ of reduced
dimension valid for the relativistic description of electrons

1 It should be emphasized that the language of second-quantization
is also used in the four-component theory as it is used in nonrelativ-
istic quantum chemistry. This use in quantum chemistry is different
from physics as it merely serves to elegantly rephrase the calculation
of energy expectation values with correlated wave functions. The rules
for creation and annihiliation operators, which create or annihilate orbi-
tals in electronic configurations, implement the Slater–Condon rules for
the evaluation of matrix elements over N -particle functions. In phys-
ics, however, second quantization is used for the proper quantization of
classical fields.

only (the lower block h−, which is responsible for the neg-
ative energy states, is then simply neglected). The operator
h+ is sometimes misleadingly also called a no-pair operator
(strictly speaking, the first-quantized four-component Dirac
Hamiltonian is also a no-pair operator).

For the sake of simplicity, the unitary transformation in
Eq. 5 has been applied to the one-electron Dirac Hamiltonian
in an external field. The generalization to arbitrary particle
numbers may be derived in terms of the usual tensor product
formulation for the construction of the many-particle Ham-
iltonian (see [26] for details).

The linear transformation U is chosen to be unitary in
order to preserve the normalization of states as well as the
spectrum of the Hamiltonian. The transformed four-compo-
nent wave function is then obtained as,

φ = Uψ

= U

(
ψL
ψS

)
=

(
ULLψL + ULSψS
USLψL + USSψS

)
=

(
φL
φS

)
, (6)

withφS = 0 for electronic states. The basic quantum mechan-
ical equation of motion for an relativistic electron in this no-
pair formulation is thus obtained as,

h+φL = i
∂φL

∂t
, (7)

or in stationary form for h+ independent of t ,

h+φL = E+φL. (8)

Until the work of Barysz and Sadlej in 2002 [31], these
techniques have been considered approximate and have thus
always been termed ‘quasi’-relativistic in order to make a
distinction from the ‘fully’ relativistic four-component refer-
ence. These authors achieved for the very first time the direct
numerical calculation of the upper block Hamiltonian h+ and
the transformed upper component φL without any reference
to a small component. Numerical means that the resulting
one-electron upper block Hamiltonian h+ was obtained in
a matrix form defined with respect to a pre-defined basis
set, and its entries can hardly be traced back to well-defined
analytic expressions for matrix elements as these numerical
values resulted from an iterative numerical scheme. Barysz
and Sadlej have thus achieved exact decoupling of upper and
lower components of the spinor in a purely numerical scheme.
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In order to fully appreciate this achievement,2 one has to
recall that a true two-component method must never make
any reference to the small component of the spinor, i.e., the
lower block of the Hamiltonian h−, which would account for
the positronic states, is never calculated, neither are off-diag-
onal coupling matrices calculated. Thus, also the off-diagonal
partsULS andUSL of the unitary matrix are not available in a
truely two-component scheme and may only be obtained by
evoking a four-component framework, which we explicitly
try to circumvent here.

We should not forget to mention that (approximate)
no-pair operators have been studied by many groups for quite
some time (see e.g., the extensive account by Kutzelnigg
in Ref. [33]). The new developments aimed at exact decou-
pling without reference to a small component. The numerical
achievement of Barysz and Sadlej [31], which has been called
the infinite-order two-component (IOTC) method related to
earlier work by Barysz et al. [34], raised the question whether
an analytic expansion to infinite-order is possible at all.3 This
issue will be discussed after Sect. 3 where the generalized
Douglas–Kroll–Hess (DKH) method [35] is introduced.

The most important transformation technique is the
so-called the DKH method [36, 37], to which the work of
Barysz and Sadlej has a close relation [38]. In the next Sec-
tion, we introduce the DKH transformation technique in the
most general way [35]. The unique character [38] of this
scheme is explained and it is then argued that this particular
method provides a ‘fully’ relativistic electrons-only theory
free of the positronic-state inconsistencies.

3 Essential DKH theory

Although the unitary matrixU in Eq. 5 can formally be given
in closed-form [32], the elements in this matrix U are ob-
tained from a rather complicated equation, which needs to be
solved iteratively. It is this equation which has been solved
by Barysz and Sadlej [31] to directly obtain a numerical rep-
resentation of h+. (We do not want to go into details here but
only mention that this direct approach involves an important
trick invented by Hess [39], namely the use of a p2-basis,
which we need to discuss later.)

Since the closed-form solution for U allows us to derive
an expression for h+, which cannot readily be evaluated as
the elements ofU occurring in this expression are not readily
calculated, it turned out to be useful to think of a consecutive
decoupling in terms of a sequence of unitary transforma-

2 It should be mentioned that the basic equations were known for
some time [32] but assumed to be of purely formal character not useful
in actual calculations.

3 Here, we again meet the implementability and feasibility require-
ment mentioned earlier: it is, of course, possible to write some sort of
series expansion on a piece of paper, in which terms are added up to
infinity (compare also the elimination techniques) but — even if such
an expansion converges — this does not imply that one can carry out
actual calculations to an order sufficiently high to call the result exact
(within machine precision).

tions U = · · ·U4U3U2U1U0, which block-diagonalizes hD
stepwise,

hbd = · · ·U4U3U2U1U0 hD U
†
0U

†
1U

†
2U

†
3U

†
4 · · · . (9)

Each unitary matrixUi shall then be chosen such as to dimin-
ish the off-diagonal terms, which are also called odd terms,
order by order. This order-by-order block diagonalization
assumes the existence of an expansion of the block-diago-
nal Hamiltonian in terms of a suitable expansion parame-
ter, which allows to identify block-diagonal (so-called even)
operators, Ek , of given order k. The formal expansion param-
eter of the DKH decoupling procedure is the external po-
tential V . (Note that we have skipped the subscript ‘nuc’
since other scalar potential contributions may be included as
well.) Once all these even operators are added we obtain the
block-diagonal Hamiltonian,

hbd =
∞∑

k=0

Ek. (10)

A partially transformed Hamiltonian hpt obtained after the
m-th unitary transformation may be written as

hpt =
2m+1∑

k=0

Ek +
∞∑

k=2m+2

E (m+1)
k +

∞∑

k=m+1

O(m+1)
k , (11)

where we have already anticipated the so-called (2m + 1)-
rule, which states that each unitary transformation yields two
orders k of the expansion parameter V in Eq. 10. Equation 11
still contains off-diagonal (odd) operators Ok , which need
to be removed by subsequent unitary transformations. How-
ever, this can only be successful if the magnitude of the Ok

is diminished as k gets larger. Note that we have also antic-
ipated in the superscripts that the final form of the Ek with
k ≥ 2m + 2 is not reached after the m-th unitary transfor-
mation. We have to stipulate that all Ek with k ≤ 2m + 1
remain untouched by the following unitary transformations.
Otherwise, the low order even terms E0, E1, E2, ... would
be changed after every new transformation step. This is not
desirable as a useful method should only add higher-order
even terms to the low-order even terms, which are to remain
untouched and contribute most to hbd.

In order to meet this requirement, it is necessary to expand
each unitary matrix Um into a power series,

Um =
∞∑

j=0

am,jW
j
m = 1 +

∞∑

j=1

am,jW
j
m, (12)

where am,0 = 1 was chosen and each term of the series is
classified uniquely according to the order k = m × j with
respect to the same expansion parameter V as used in Eq. 10.
The analytic expansion of Um in Eq. 12 is the most general
form of what may be called ‘a parametrization of a unitary
matrix’ withWm being the parameter. This parameter can be
chosen freely as long as it is anti-hermitian,

W †
m = WT �

m = −Wm, (13)
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so that U †U = 1 can be fulfilled and also because we need
to be able to readily write the adjoint transformation,

U †
m =

∞∑

j=0

(−1)j am,jW
j
m = 1 +

∞∑

j=1

(−1)j am,jW
j
m, (14)

for the evaluation of Eq. 10. The use of these most general
parametrizations of the unitary matrices has led to the term
generalized DKH transformation [35] as the resulting Ham-
iltonians make no reference to a specific parametrization of
the unitary matrix (Douglas and Kroll [36] introduced the so-
called square-root parametrization, which turned out to be no
essential part of the theory [35]; see Sect. 4.3).

To fulfill the unitary condition for each Ui in Eq. 12, we
have to transfer the unitarity requirement onto the expansion
coefficients (see [35] for details). The identity operator 1 in
Eq. 12 takes care to leave the low-order even terms Ek with
k ≤ 2m+1 untouched. Since the order of the termW

j
m in the

parametrization expansion forUm ism×j , each product with
even terms Ek resulting from Eq. 9 is of order k × (m × j),
which is always larger than 2m+ 1 if the product is even —
otherwise the term may be of lower order but odd and will
thus be eliminated in this or in a later unitary transforma-
tion step. It is important to understand that we obtained odd
operators of comparatively low order in V while we derived
already the final form of higher-order even operators due to
the (2m + 1)-rule. Since these higher-order even operators
do not change in subsequent transformation steps, we have
already obtained the higher-order DKH Hamiltonian and can
simply neglect the lower-order odd terms without making an
approximation.

The step-by-step elimination of odd terms Ok is essential
to the method but how are the odd terms eliminated order by
order? Here, we make use of the freedom in the choice of the
anti-hermitian parameter Wm. Once the expansions (Eq. 12)
are inserted in Eq. 10, we simply need to require,

[Wm, E0] − am,0

am,1
O(m)
m = 0, (15)

in order to eliminate the odd term of orderm (the derivation is
not complicated but a bit tedious). This equation thus deter-
mines Wm — but it also requires Wm to be an odd operator.
Note that odd operators cannot have a representation in a truly
two-component framework like DKH as odd means off-diag-
onal, i.e., coupling between the upper and lower components
of the spinor — but there must not be a small component.

For the derivation of the DKH Hamiltonian, it is manda-
tory [38] to carry out U0 explicitly as a free-particle Foldy–
Wouthuysen transformation [36, 40],

U0hDU
†
0 = βEp − c2

︸ ︷︷ ︸
E0

+Ap
(
V + RpVRp

)
Ap︸ ︷︷ ︸

E1

+βAp
[
Rp, V

]
Ap︸ ︷︷ ︸

O1

≡ H1, (16)

using the auxiliary quantities

Ep =
√

p2c2 + c4 , Ap =
√
Ep+c2

2Ep
,

Rp = cα·p
Ep+c2

(17)

in order to obtain the sequence of two even and one odd term
on the right hand side of Eq. 16. All subsequent unitary trans-
formations Ui≥1 can be carried out in an automated manner,
which makes the symbolic derivation of DKH Hamiltonians
of arbitrary order feasible [41].

The parametrization given by Eq. 12 also takes care of
the fact that no low-order odd terms may arise: once an odd
term of a given order has been eliminated, an odd term of
this order will never occur again. The reason for this is that
inserting Eq. 12 in Eq. 10 yields operator products, e.g., for
fifth-order,

U2U1H1U
†
1U

†
2

≈ [
1 + a2,1W2 + a2,2W

2
2

]
︸ ︷︷ ︸

≈ U2

× [
1 + a1,1W1 + a1,2W

2
1 + a1,3W

3
1 + a1,4W

4
1

]
︸ ︷︷ ︸

≈ U1

×H1
[
1 − a1,1W1 + a1,2W

2
1 − a1,3W

3
1 + a1,4W

4
1

]
︸ ︷︷ ︸

≈ U
†
1

× [
1 − a2,1W2 + a2,2W

2
2

]
︸ ︷︷ ︸

≈ U
†
2

(18)

which are either of low order in k and even or, if odd, of higher
order (note that the approximation signs ‘≈’ in Eq. 18 do not
imply that the Hamiltonian of fifth-order is approximated).

We finally obtain the DKH operator of given order n,
hDKHn, as a partial sum of even terms in expansion (Eq. 10),

hbd =
n∑

k=0

Ek +
∞∑

k=n+1

Ek = hDKHn +O
(
Ṽ n

)

= hDKHn +O
(
V n+1

)
, (19)

with the energy-damped external potential Ṽ as expansion
parameter — often abbreviated as ‘the external potential V ’.

It is important to understand that the Taylor expansion
for the unitary matrices in Eq. 12 can be truncated at rather
low order (compare Eq. 18). The zeroth-order even term E0

would be multiplied with someWj
m operator if the expanded

unitary transformation is inserted in Eq. 10. For m = j = 1
the smallest power inV results for the product term. Thus, the
second unitary transformationU1, which contains the lowest-
orderW1 parameter has to be expanded at most up to theWm

1
term, ifm is the desired order of the DKH Hamiltonian. Thus,
the truncation of Eq. 12 does not introduce any approxima-
tion! However, a somewhat unpleasant property of the DKH
expansion is that the inner unitary transformations have to
be expanded to high powers of the Wm parameter because
the Wm parameters of the inner transformations contain the
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potential V only to some small powerm; U1 is parametrized
byW1, which contains V 1, U2 is parametrized byW2, which
is already of order V 2,U3 is parametrized byW3, which con-
tains V 3, and so forth.

The original formulation of the DKH method has been
given up to second order, DKH2, by Douglas and Kroll [36]
and implemented by Hess in 1986 [37, 42] (we owe Barysz
and Sadlej the first instructive review of Hess’ingenious com-
putational ingredients for the DKH method [43]; see also [35]
for explicit details on the implementation into quantum chem-
istry program packages). The derivation and implementation
of the third-order variant, DKH3, by Nakajima and Hirao [44]
initiated a lot of new work on the DKH method. Their work
also stimulated the generalization of the DKH method [35]
so that the theory can now be presented in the most general
way. First, this generalized DKH method has been explicitly
developed and implemented up to fifth-order [35] where a
dependence of E5 on some expansion coefficients am,j occurs
for the very first time (up to fourth-order, the DKH Hamil-
tonians are independent of the chosen parametrization). Of
course, due to the embracing contiguous unitary transforma-
tions, such an expansion coefficient dependence is transduced
to all E≥5 operators. This aspect has been further investigated
by van Wüllen [45], who also gave explicit sixth order E6
expressions using the next unitary matrix U3; we will come
back to this issue in Sect. 4.3. We should emphasize that
DKHn denotes the sum hDKH,n = ∑n

k=0 Ek and not the sin-
gle highest-order term En.

The most important question is why the DKH scheme is
unique. We have addressed this question in detail in Ref. [38].
The results of this formal analysis, which was necessary in
order to understand whether exact decoupling with DKH can
be achieved in actual calculations at all, may be briefly sum-
marized in the following three paragraphs:

The initial transformation U0 of the DKH procedure has
necessarily and uniquely to be chosen as the well-known
free-particle Foldy–Wouthuysen (fpFW) transformation [38].
This result was derived employing the framework of the gen-
eralized DKH transformation, i.e., the most general param-
etrization of unitary matrices defined by Eq. 12. Then, the
uniqueness of the fpFW transformation can be understood in
terms of this generalized expansion of U0: all other paramet-
rizations, i.e., all other choices of unitary expansion condi-
tions a0,j yield ill-defined and singular expressions. Only the
fpFW transformation produces the first single closed-form
odd operator O1 linear in the potential V and can thus serve
as the starting point for creating and annihilating odd terms of
higher order inV . Note that the original odd term in the Dirac
Hamiltonian in Eq. 1 is the term c α·p which does not depend
on V and is thus a zeroth-order term to be abbreviated as O0.

In principle, we may expand the block-diagonal
Hamiltonian analogously to Eq. 10 with respect to any other
expansion parameter. Reasonable expansion parameters are
the inverse speed of light 1/c, which is in Hartree atomic
units used here identically to the fine structure constant α,
or the external potential V . However, these formal expan-
sion parameters are accompanied by additional quantities so

that the true expansion parameters are p/mc or the energy-
damped potential Ṽ (each V is accompanied by huge energy
denominators; see below). Note that if we would have chosen
an expansion parameter 1/m based on the rest massm of the
electron, we would have used the very same true expansion
parameter p/mc as in the 1/c expansion. The failure of an
expansion in terms ofp/mc, which would represent a higher-
order FW transformation, has been shown to be related to
the kinetic term E0 and stems simply from a nonconvergent
Taylor series expansion [38]. Due to the 1/r-singularity of the
Coulomb potential, the FW transformation may be affected
by additional problems for r → 0, which has been known
for some time (see e.g., the work of Kutzelnigg [46, 47]).

The decisive aspect with respect to the fpFW is the gen-
eration of O1 containing exactly only linear-potential terms
rather than the consecutive generation of the higher-order
odd terms, which are all of a single well-defined high-order
in V . With Ṽ being the only remaining expansion parameter,
the DKH protocol is thus the unique transformation scheme
for decoupling the Dirac Hamiltonian [38]. Consequently,
the IOTC approach can be discussed in this framework and
represents a purely numerical ‘one-step’ variant of the infi-
nite-order DKH scheme [38].

Here, we shall now proceed with the discussion of exact
analytical decoupling within the DKH approach. The results
obtained in Ref. [38] have shown that the exact decoupling of
the Dirac Hamiltonian in the original DKH framework can
only be achieved analytically. The first step towards exact de-
coupling is thus the implementation of a symbolic derivation
of DKH Hamiltonians of arbitrary-order, which can then be
evaluated by matrix multiplications. This has been realized
within the DKH method for the first time only recently [41]
(see Table 1 for representative results). For exact decoupling,
an equally important second step has to be taken: since DKH
Hamiltonians can only be derived order by order, which has
been automated, it is necessary to know in advance the order
which is sufficient for decoupling to machine precision. This
step has also been taken in Ref. [41]. It was possible to define a
truncation error operator which allows to determine the max-
imum order needed for exact decoupling (within machine
precision) for a given potential V owing to the well-defined
convergence behaviour of the DKH series.

The presentation so far has been restricted only to the
one-electron Dirac operator in an external field, e.g., to the
DKH treatment of the hydrogen atom. The reason for this was
that all essential steps can be dicussed for this system. We
should emphasize again that the extension to many-electron
systems is straightforward if one uses the tensor calculus for
the construction of many-electron Hamiltonians and states
(see [26]).

4 Conceptual issues of DKH theory

Douglas–Kroll–Hess theory appears to be rather complicated
and involved. Therefore, we proceed to the investigation of
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Table 1 1/Z2-scaled one-electron 1s energies (Escaled = −E/Z2) for the DKH scheme employing an exponential expansion for the parametri-
zation of the unitary transformations in Eq. 12 (in Hartree atomic units). DEQ denotes the exact Drac eigen value known analytically

Z 20 40 60 80 100

n.rel. 0.500000000 0.500000000 0.50000000 0.50000000 0.5000000
DKH1 0.503353740 0.514933891 0.53727855 0.57600742 0.6472394
DKH2 0.502681349 0.511009862 0.52608269 0.55051952 0.5906192
DKH3 0.502691655 0.511137573 0.52662335 0.55204993 0.5942370
DKH4 0.502691274 0.511128036 0.52656307 0.55182946 0.5936474
DKH5 0.502691312 0.511130065 0.52658415 0.55194727 0.5941541
DKH6 0.502691308 0.511129616 0.52657690 0.55189081 0.5938314
DKH7 0.502691308 0.511129699 0.52657886 0.55191021 0.5939588
DKH8 0.502691308 0.511129683 0.52657829 0.55190266 0.5938970
DKH9 0.502691308 0.511129687 0.52657849 0.55190627 0.5939362
DKH10 0.502691308 0.511129686 0.52657841 0.55190444 0.5939107
DKH11 0.502691308 0.511129686 0.52657844 0.55190526 0.5939244
DKH12 0.502691308 0.511129686 0.52657843 0.55190488 0.5939165
DKH13 0.502691308 0.511129686 0.52657843 0.55190508 0.5939217
DKH14 0.502691308 0.511129686 0.52657843 0.55190498 0.5939182
DEQ 0.502691308 0.511129686 0.52657843 0.55190502 0.5939195

The horizontal lines denote the order at which exact decoupling is obtained (within the given accuracy). This order is naturally dependent on the
external potential, i.e., on Z. The table has been produced from the results given in Ref. [41]. The DKH energies are given up to the 14th order
in the external potential V

additional conceptual difficulties, some of which have not yet
been discussed elsewhere.

4.1 The momentum space ‘myth’

When Hess presented his work in 1986, he followed the
momentum-space representation of Douglas and Kroll. Our
derivation so far has not made any reference to a particular
choice of representation. And in fact it is not required to rep-
resent all operators in an explicit momentum-dependent basis
set. The origin of the momentum-space presentation of the
DKH method may be traced back to the square-root operator

in E0, i.e., E0 =
[
β
√

p2c2 + c4 − c2
]

[compare Eqs. 16 and

17]. This term requires the evaluation of the square root of
the momentum operator. Such a square-root expression can
hardly be evaluated in a position-space formulation with lin-
ear momentum operators as differential operators (compare
for this line of reasoning Ref. [18]). In a momentum-space
formulation, however, the momentum operator takes a simple
multiplicative form.

Formally, we then have to Fourier-transform all opera-
tors which possess in position space a simple multiplicative
form like the scalar potential V , and obtain integral operators
defined by their operator kernels. Hence, also Eq. 15 has to
be given in momentum space and is usually written for the
corresponding operator kernels as

Wm(p0, p1, . . . , pm)− am,0

am,1
β

O(m)
m (p0, p1, . . . , pm)

Ep0 + Epm
= 0.

(20)

However, neither Eq. 15 nor Eq. 20 can be evaluated in the
DKH framework because all operators in these equations are
odd and cannot therefore be calculated (there is no small
component in a two-component theory!). Nonetheless, the

Wm operators are, of course, present in the even terms of the
DKH Hamiltonian and need to be evaluated. Since they are
multiplied with other odd operators, all odd operators can be
grouped and the odd×odd products are even and thus com-
putable.

A quantum chemical calculation of a molecule is usually
carried out in a given one-particle position-space basis set,
typically consisting of a set of Gaussian-type basis functions.
As mentioned above, already the lowest-order even term, E0,
requires the evaluation of the square root of a sum containing
the square of the momentum operator. Hess realized [39] that
this only requires a basis, which yields a diagonal represen-
tation for p2. Since the nonrelativistic kinetic energy matrix
of a single electron, (t) = (p2/2), is calculated in all quan-
tum chemistry program packages, diagonalization of (t) can
easily be carried out and the eigenvectors yield the transfor-
mation matrix from the original position-space basis set to
a linearly transformed position-space basis, which yields a
diagonal representation for p2. After calculation and addi-
tion of all even terms in this p2-basis by standard matrix
operations, the resulting matrix representation of the DKH
Hamiltonian can be transformed back to the original basis
with the inverse transformation.

4.2 Is the DKH expansion in powers of V unique?

The dependence of the DKH Hamiltonians of fifth and higher
order on the expansion coefficients am,j in the parametriza-
tion of the unitary transformation in Eq. 12 clearly shows that
the DKH expansion in Eq. 10 cannot be unique in the sense
that it is possible to have different expansions of hbd in terms
of the external potential [this question must not be confused
with the uniqueness of the external potential V as the only
possible expansion parameter in Eq. 10]. At first sight, this



248 M. Reiher

is odd because one would expect that an expansion of hbd in
powers ofV according to Eq. 10 should be unique.At infinite-
order, all infinitely many different expansions with respect to
the external potential V , formally written in Eq. 10 as a sin-
gle unique one, do necessarily yield the same spectrum of the
block-diagonal Hamiltonian hbd.

Obviously, the different expansions are related to one an-
other. Let us assume two different sequences of unitary trans-
formations,

U = · · ·U4U3U2U1U0 (21)

and

U ′ = · · ·U ′
4U

′
3U

′
2U

′
1U

′
0, (22)

which differ in the choice of expansion coefficients am,j in
Eq. 12. Then, we can formally write the relation between
both the resulting expansions of hbd,

h
(U)
bd = · · ·U4U3U2U1U0hDU

†
0U

†
1U

†
2U

†
3U

†
4 · · · = UhDU

†

(23)

and

h
(U ′)
bd = · · ·U ′

4U
′
3U

′
2U

′
1U

′
0hDU

′†
0 U

′†
1 U

′†
2 U

′†
3 U

′†
4 · · ·

= U ′hDU
′†, (24)

as a linear map S

S = · · ·U ′
4U

′
3U

′
2U

′
1U

′
0U

†
0U

†
1U

†
2U

†
3U

†
4 · · · = U ′U †, (25)

which transforms the expansion of h(U)bd = ∑
i E (U)i to the

one for h(U
′)

bd = ∑
i E (U

′)
i .

However, this formal trick to describe the relation be-
tween both expansions does not explain explicitly how the
difference between the Hamiltonians (Eq. 23) and Eq. 24 at
a given power n > 4 of the expansion parameter V is com-
pensated at some higher power m > n. This aspect has been
studied by van Wüllen who gave explicit formulations for the
fifth- and sixth-order Hamiltonians, which shall highlight the
compensation mechanism in a systematic manner [45].

4.3 Relevance of the dependence on the expansion
parameters am,j

From the last subsection we understand that one should use
DKH Hamiltonians either only up to fourth-order or up to
infinite-order (within machine precision) in order to avoid
ambiguities in the method. However, even for other truncated
DKH Hamiltonians of fifth- or higher-order, these ambigui-
ties are very small and can hardly be observed if the basis set
used is not sufficiently large (it needs to contain huge coeffi-
cients in the exponents of the basis functions, which might
then cause numerical instabilities). Thus, a discussion of the
coefficient dependence of the results obtained with fifth or
higher order DKH Hamiltonians is not relevant as the numer-
ical effect is tiny and one can always restrict a calculation to
the fourth or to some high order, say DKH10.

Interestingly, for a long time it was believed that the
original square-root parametrization of Douglas and Kroll

is particularly useful since the mandatory Taylor expansion
of the square root according to Eq. 12 contains only even
terms (all odd terms possess zero coefficients). Nakajima and
Hirao [44] then used a different parametrization, which is
much more well known in the quantum chemistry commu-
nity, namely the exponential parametrization (other closed-
form parametrizations for Eq. 12 are also known [25–27]).
And indeed, the square-root parametrization leads to the small-
est number of terms in the DKH Hamiltonian [41], but the
exponential parametrization can be expected to converge
faster. However, the purpose of the parametrization defined
by Eq. 12 is to yield unitary Taylor expansions. The only
formal choice for an optimum parametrization is thus one,
which requires the expansion parameters am,j to fulfill the
unitarity condition as closely by as possible. On the basis of
this requirement it is possible to define the so-called optimum
parametrization [35].

4.4 Convergence properties of the DKH energies

It has already been mentioned in Sect. 3 that the true expan-
sion parameter in Eq. 10 is the energy-damped potential Ṽ .
The origin of this damping is the energy of the freely moving
relativistic electron in Ep by Eq. 15 [38]. In the matrix oper-
ations needed for the evaluation of the DKH Hamiltonian,
the energy damping occurs automatically via

RiVRj −→ Ṽij = Vij

Ei + Ej

= Vij√
p2
i c

2 + c4 +
√

p2
j c

2 + c4
, (26)

where Vij is a matrix element of the external potential in
the p2-basis. Note that the p2

i = p2
i values are simply the

eigenvalues of the nonrelativistic kinetic energy matrix mul-
tiplied by two. Since we are working in a p2-basis, we have
associated with each basis vector a value for the squared
momentum.

The variational stability of the DKH Hamiltonians — a
boundary condition for the convergence of the DKH series
— has been proven for DKH2 [48] and new results for the
higher-order expansion have been obtained as well [72]. De-
spite these analytical findings, which may be regarded as
a first step towards an even deeper understanding of DKH
theory, first numerical results obtained for the eigenvalues
of higher-order DKH Hamiltonians created doubts on the
method. Nakajima and Hirao [44] obtained a smooth con-
vergence even for the third-order DKH energies. A closer
inspection up to fifth-order [35] and later up to 14th order [38]
revealed an oscillating but convergent behaviour, which is
paralleled by the magnitude and sign of the truncation opera-
tor defined in Ref. [38]; the odd orders DKH1, DKH3, DKH5,
DKH7, DKH9, ... always yield energies below the four-com-
ponent reference energy. The first result by Nakajima and
Hirao appears to be an artifact of a too small basis set. Later,
additional doubts on the DKH methods arose from results
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obtained to approximate the degenerate Dirac energies s1/2
and p1/2, which turned out to be nondegenerate at low-order
DKH theory [49–51]. However, all these discrepancies van-
ish at higher order provided the basis set is properly chosen.
The different accuracy of the low-order s1/2 andp1/2 energies
has been rationalized by van Wüllen [51].

4.5 At which stage do we get rid of the negative-energy
states?

The exact block diagonalization of the Dirac Hamiltonian
ensures that no coupling between electronic and positronic
states occurs, but the block-diagonal Hamiltonian is still a
4 × 4 (super)matrix. The ‘true’ decoupling is only achieved
if we manage to selectively calculate h+ so that the lower
block Hamiltonian h− is never obtained. In fact, this is actu-
ally done but the central point is usually not explicated.

In order to understand this point, we start from the explicit
expansion of Eq. 12 inserted in Eq. 10 as carried out in Eq. 18.
For the evaluation of the DKH Hamiltonian we have to carry
out all multiplications in Eq. 18. Usually the even terms are
then collected and represented as commutators. However, for
their evaluation the commutators are expanded again. The
resulting products contain only a small number of matrices
[41] which contain β operators that may be contracted within
the expression for each term of the operator by using proper
commutation and anti-commutation rules in order to exploit
the relation β2 = 1 as often as possible. If there exists an
even number of β operators in a term of the DKH Hamil-
tonian, then all β matrices vanish and the sign of this term
might have changed due to anti-commutation relations. If the
number is odd, one β operator survives. These surviving β
operators lead to the two types of solutions, i.e. the positive-
and negative-energy states, because of the diagonal struc-
ture (1,1,−1,−1) of the β matrices. Since we are interested
only in the upper block Hamiltonian h+, we keep the upper
2×2 block of the β operator, which is the 2×2 unit matrix
12. Thus, the β can be skipped for electronic states, while for
negative-energy states (i.e., for the so-called positronic states)
we would have to change the sign of all operators linear in β
for the calculation of h− (the other terms are independent of
β and remain unchanged).

4.6 Is there an approximate RI step in DKH theory?

An interesting aspect of DKH theory is that (standard) opera-
tor matrices for the (nonrelativistic) kinetic energy and exter-
nal potential can be used for the evaluation of the DKH
Hamiltonian. Only one nonstandard matrix is needed, which
can be calculated with little additional effort. This is the ma-
trix representation of pVp,

p · Vp −→ (pxVpx)+ (pyVpy)+ (pzVpz), (27)

which is evaluated by operation with the momentum oper-
ator on the basis functions and integration of the resulting
matrix elements. From diagonalization of the kinetic energy

we obtain the eigenvalues to calculate the relativistic energy
of a freely moving particle and the eigenvector matrix for the
transformation of the V and pVp matrices in the p2-basis.
Thus, the DKH Hamiltonian is calculated as a matrix repre-
sentation for the relativistic energy of a freely moving particle
to which correction terms are added that include order-by-
order the action of the external potential.

However, there is a peculiarity involved because some
terms in the DKH Hamiltonian are of the form pV . . . Vp,
i.e., no momentum operator occurs between the potential en-
ergy operators and thus no matrix representation is at hand.
Hess’ solution to this problem was the introduction of a res-
olution of the identity (RI),

1 = p · p

p2
, (28)

which generates pVp matrix operators after insertion be-
tween the two external potential operators and rearranging
the p operators:4

pV . . . Vp=pV . . .
p · p

p2
. . . Vp=pVp . . .

1

p2
. . .pVp.

(29)

So far, we have not introduced any approximation. But the
evaluation of the operator sequence on the right hand side of
Eq. 29 requires a translation into products of operator matri-
ces,

pVp . . .
1

p2
. . .pVp

−→ (pVp) (. . . )
(
1/p2

)
(. . . ) (pVp) , (30)

where (. . . ) symbolizes the matrix form. It is this last trans-
lation step which makes the introduced RI approximate and
which requires a large basis set, since Eq. 30 is only exact in
a complete basis set.

4.7 The density paradoxon

Another interesting aspect of DKH theory is what one might
call ‘the density paradoxon’. The density distribution ρ of
a single electron in an external potential calculated from a
four-component wave function is defined as

ρ(r) = ψ†(r)ψ(r) = ψ
†
L(r)ψL(r)+ ψ

†
S (r)ψS(r), (31)

and ρ fulfills a continuity equation,

∂

∂t
ρ + divj = 0, (32)

with the components of the current density given by

jk = cψ†αkψ. (33)
4 Note the implication that we never encounter a (single) linear

momentum between two V operators and that there is always a (single)
linear momentum on the right and left hand side of the right and left V
operators, respectively, in Eq. 29 if the RI is to be inserted between two
V operators. This implication is always fulfilled as can be understood
from the construction of the DKH Hamiltonian according to Eq. 18.
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The density ρ in Eq. 31 possesses no nodes if only one prod-
uct, i.e. ψ†

LψL or ψ†
SψS , is zero for a given r . This is differ-

ent in nonrelativistic Schrödinger quantum mechanics. For
instance, the radial electron density distribution of a non-
relativistic electron in a hydrogen-like atom is zero if the
radial function Rnl(r) is zero (there exist (n − l − 1) radial
nodes with n being the principal quantum number). However,
the four-component radial electron density is prevented from
becoming zero owing to the fact that the large and small radial
terms of Eq. 31 possess their nodes at different positions.

Inspection of the density resulting from the states of the
block-diagonal Dirac Hamiltonian hbd for a single electron
in an external field calculated as φ†

L(r)φL(r),

ρ = ψ†ψ = ψ†1ψ = ψ†U †Uψ

= (Uψ)†Uψ = φ
†
LφL = ρbd, (34)

shows that the four-component density is obtained from the
scalar product φ†

LφL of the two-component orbital. This is in
accordance with the fact that the continuity equation Eq. 32
then reads

∂φ
†
LφL

∂t
+ divj ′ = 0, (35)

with the transformed current density components

j ′,k = c(Uψ)†αk(Uψ). (36)

One may now ask whether this two-component density ρbd =
φ

†
LφL is also able to reproduce the mutual annihilation of

nodes described for the four-component density in Eq. 31
above. At first sight, one is tempted to claim that this is not
possible as there is no small component whose squared value
may add a finite number to compensate for a vanishing large
component according to Eq. 31. However, the two-compo-
nent transformed orbitals in the product φ†

LφL are in general
complex-valued so that φ†

LφL = |φL|2 = φ2
L,Re + φ2

L,Im,
which is also non-zero if real and imaginary parts, φL,Re and
φL,Im, possess their nodes at different values for the vari-
able r . If φL were a real-valued function, we would have
to have two different radial parts for the two components of
the 2-spinor φL in order to obtain a nodeless radial density
distribution as in the four-component case. In a one-compo-
nent approximation, which neglects all spin-dependent terms
and which therefore does not resemble the four-component
density, additional nodes may occur as in the Schrödinger
case.

5 DKH theory quo vadis?

In this work, we have revisited DKH theory from a concep-
tual point of view in order to highlight conceptual difficulties
which are usually not discussed in standard technical papers
on this theory. One aim of this work was also to emphasize the
essential parts of the theory to be separated from insignificant

details on which time and effort need not be wasted in future.
The nice features of DKH theory are that no negative-energy
artifacts occur, that accuracy can be systematically improved,
and that it is a unique transformation theory.

The nicest computational feature of the method is that its
scalar relativistic variant, i.e., where all terms in the Hamil-
tonian carrying Pauli spin matrices have been neglected after
application of Dirac’s relation, can be easily implemented in
any nonrelativistic quantum chemistry code. Even the scalar-
relativistic higher-order DKH operators up to, say, tenth or-
der, DKH10, can be implemented to take little computer
time compared to the subsequent SCF iterations. However,
for valence-shell properties like bond distances, vibrational
frequencies, or electric field gradients, the higher-order con-
tributions turned out to be negligible and the scalar-relativ-
istic effect is quantitatively recovered already at the level
of Hess’ original DKH2 method [52,53]. However, for core-
dominated properties like NMR chemical shifts and coupling
constants, higher orders become relevant. In general, one may
recommend the use of the fourth order DKH4 Hamiltonian,
which is of higher order and still independent of the choice
of parametrization of the unitary matrix.

The epilogue is that the DKH theory offers a way to cir-
cumvent the zoo of quasi-relativistic Hamiltonians as such a
plethora of operators would open a Pandora’s box of quantum
chemical studies on numerical effects of the various correc-
tions, which would not add any insight to relativistic quantum
chemistry. However, there are still several issues connected
with the DKH theory which need to be clarified. Compu-
tational challenges are (1) the inclusion of spin–orbit, and
many-electron terms in the unitary transformation of the full
many-electron Hamiltonian cannot be neglected, especially
if higher-order DKH Hamiltonians are employed as these
effects are of comparable size. In pioneering work [54–62]
only the lowest-order terms have been included so far. (2)
the calculation of geometry gradients, which are desperately
needed for structure optimizations, has only been tackled
for the second-order standard method, DKH2, [63]. (3) the
calculation of molecular properties, where picture change
effects must be avoided [64], is another challenging topic
for future research. Most treatments deal with the standard
DKH2 method (see e.g., [65–68]) but first steps have been
taken for DKH Hamiltonians up to fifth order [52, 53, 69] and
a general arbitrary-order framework is currently being devel-
oped (Wolf and Reiher, submitted). All these computational
issues tempt us to introduce powerful new approximations
but care has to be taken in order to avoid an undesirably large
number of DKH variants, which would be a step in the wrong
direction.

Also, theoretical challenges are left to be tackled, for
instance: (1) The DKH hydrogen atom awaits its solution.
A first step would be the investigation of the analytic proper-
ties of the DKH 2-spinor for the limiting cases for r → 0 and
r → ∞. (2) The treatment of large molecules with many light
atoms would be most convenient in a relativistic embedding
approach, which allows one to treat light atoms with nonrel-
ativistic Schrödinger quantum mechanics but heavy atoms
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with a two-component DKH approach. However, a rigorous
interfacing of theories is by no means trivial — if possible at
all. (3) Although the number of terms in the DKH Hamilto-
nian at a given (high) order is large and increases dramatically
with the order, the correction obtained for the energy is small
compared to the effort, i.e., the smaller the contribution to the
energy, the greater the effort to calculate it, which is some-
what unintuitive. It will be interesting to see whether future
work allows reducing the number of terms by assessing their
order of magnitude on the basis of analytic arguments.

To conclude, the formalism of DKH theory, which expe-
rienced significant improvements and offered new insights
during the last couple of years, is now well-developed but
a lot of new exciting work still needs to be done in order
to make this fully relativistic electrons-only theory a widely
used approach in all areas of theoretical chemistry.
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23. Pyykkö P (2000) Relativistic theory of atoms and molecules, vol
III – A Bibliography 1993–2000. Springer, Berlin Heidelberg New
York
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